
1

Transactions

One or more SQL statements that form a logical unit of work.

 Any action that reads/writes (including deletes) data from DB.

 MySQL: Only DML statements: (select, update, insert, delete ...), affect "data."

 NOT DDL statements: (create, drop, alter ...), affect db structure.

The statements in a transaction will be executed as an atomic unit of work in the database.

Either the results of all of the statements will be applied to the database, or none of the

statements will have results posted to the database.

ANSI (American National Standards Institute) SQL database transactions support:

Two SQL statements: COMMIT and ROLLBACK

ANSI standards require: when a transaction sequence is initiated by a user or an application

program, it must continue through all succeeding SQL statements until one of four events

occurs:

1. COMMIT statement reached

2. ROLLBACK statement reached

3. End of program is successfully reached (equivalent to COMMIT)

4. Program abnormally terminated (equivalent to ROLLBACK)

General syntax, MySQL commands for transactions (require START TRANSACTION or

BEGIN):

1. START TRANSACTION (or BEGIN) ("end" is either commit or rollback)

2. COMMIT: Makes changes permanent

3. ROLLBACK: Cancels changes since last COMMIT

Start Transaction vs. Begin Work - Syntax Note (From the MySQL manual):

http://dev.mysql.com/doc/refman/5.5/en/commit.html

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a

transaction. START TRANSACTION is standard SQL syntax and is the recommended

way to start an ad-hoc transaction.

BEGIN (transaction) vs. BEGIN … END compound statement:

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END

compound statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN

... END Compound-Statement Syntax”.

http://dev.mysql.com/doc/refman/5.5/en/begin-end.html

Within all stored programs (stored procedures and functions, triggers, and events), the

parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block. Therefore, Begin a

transaction in this context with START TRANSACTION instead.

http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/begin-end.html

2

ACIDS-compliant DBMS:

1) ATOMICITY:

 Each transaction treated as indivisible unit.

 All statements within transaction must be successful for transaction to be considered

successful.

 If transaction failure, system returned to pre-transaction (consistent) state.

Example: following statements treated as one logical unit of work
START TRANSACTION;

 select ...

 update ...

 insert ...

 delete ...

COMMIT;

2) CONSISTENCY:

 Once transaction completed, system must be in consistent state.

 If any integrity constraints fail (e.g., domain constraints, entity/referential integrity

constraints, etc.). Transaction aborted (rolled back).

Example (showing BEGIN): if any statement fails, entire transaction aborted
BEGIN;

 select ... (uses incorrect syntax)

 update ...

 insert ... (uses incorrect data type)

 delete ...

COMMIT;

3) ISOLATION:

 Changes made by transaction invisible to other transactions (users) while in

progress.

 Data used for one transaction cannot be used by another transaction until first

transaction completed.

Example:

Connection 1:
START TRANSACTION;

insert into transaction (id) values (1);

select * from transaction; -- Connection 1 sees new data.

Connection 2:
SELECT * FROM transaction; -- Connection 2 does NOT (prior to COMMIT)

4) DURABILITY:

 Changes to the database persist.

 If transaction committed cannot be rolled back.

Example: Committed statements persist
START TRANSACTION;

 select ...

 update ...

 insert ...

 delete ...

COMMIT;

ROLLBACK; (cannot rollback, even if power failure after COMMIT)

3

5) SERIALIZABILITY:

 "Ques" all transactions to occur "serially" (sequentially), in order of access

 DBMS Scheduler: manages concurrency control to ensure serializability of transactions

(lock/unlock data)

Note:

 Isolation and serialization are nonissues in single-user database systems.

 Transaction log: records necessary information to process transaction, if

interrupt/power failure.

 Engine will read logs on next startup and commit any remaining transactions.

End of Transaction:

1) COMMIT;

2) ROLLBACK;

3) Program ends successfully (equivalent to COMMIT)

4) Program abnormally terminates (equivalent to ROLLBACK)

MySQL

Example:
START TRANSACTION;

select * from user;

UPDATE user SET lname='Jones' WHERE uid=1;

select * from user;

COMMIT;

-- demo transactions do not work on DDL statements
drop table if exists transaction;

show tables;

START TRANSACTION;

create table if not exists transaction (id int) engine=innodb;

ROLLBACK;

show tables; -- transaction table still exists

Transaction Demo:
-- Transaction Example (test db):

use test;

show tables;

drop table if exists transaction;

create table transaction (id int) engine=innodb;

Connection 1:
START TRANSACTION;

insert into transaction(id) values (1);

select * from transaction;

rollback; -- w/o commit insert NOT permanent

select * from transaction;

-- commit; (commit is commented out for now

Connection 2:
SELECT * FROM transaction; -- Connection 2 does NOT (prior to COMMIT)

4

MS SQL Server

Example:
-- *cannot* use "start" in SQL Server, must us BEGIN

BEGIN TRANSACTION;

select * from applicant;

UPDATE applicant SET app_lname='Jones' WHERE app_id=1;

select * from applicant;

COMMIT;

Example (maintain data integrity):
DECLARE @rtpID tinyint;

BEGIN TRY

 BEGIN TRANSACTION;

 -- demo with good and bad data

 INSERT INTO dbo.room_type

 (rtp_name, rtp_notes)

 VALUES

 ('Grand Room', NULL);

 -- @@IDENTITY: (global variable) last value inserted into IDENTITY column

 SET @rtpID = @@IDENTITY;

 -- rtp_id (fk) must maintain data integrity with parent table

 INSERT INTO dbo.room

 (prp_id, rtp_id, rom_size, rom_notes)

 VALUES

 (3,@rtpID, '40'' x 60''', 'Big Room!');

 COMMIT TRANSACTION;

 PRINT 'Successful!';

 select * from room;

END TRY

BEGIN CATCH

 ROLLBACK TRANSACTION;

 PRINT 'Rolled back!';

END CATCH;

